1. Multiplying Binomials
  2. Special Patterns
  3. Vocabulary
      1. Provide an example of each term below.
      2. Use the FOIL pattern to calculate each product.
      3. Use the FOIL pattern to calculate the square of each binomial sum.
      4. Use the FOIL pattern to calculate the square of each binomial difference.
      5. Use the FOIL pattern to calculate each product.



    Name _______________________________

     

    Multiplying Binomials

    Back to top




    Special Patterns

     

    Back to top




    Vocabulary

     





    Provide an example of each term below.

     

    1. FOIL pattern

     

    2. square of a binomial sum

     

    3. square of a binomial difference

     

     





    Use the FOIL pattern to calculate each product.

     

     

     

    4. ( x + 6)( x + 3)         8. (5 x - 1)( x - 4)

               

     

    5. ( x + 4)( x + 5)          9. ( x - 8)(6 x - 2)

     

     

    6. ( x - 1)(2 x + 4)        10. ( x - 10)( x + 4)

     

     

    7. (3 x - 7)( x + 2)         11. ( a + b )( c + d )

     

     

    12. Describe how the coefficients of each term in the product is related to the coefficients of

    the binomials.

     

     





    Use the FOIL pattern to calculate the square of each binomial sum.

     

    14. alt        18. alt

     

    15. alt        19. alt

     

    16. alt        20. alt

     

    17. alt        21. alt

     

     

    22. Describe how the coefficients of each term in the product is related to the coefficients of

    the binomial.

     

     





    Use the FOIL pattern to calculate the square of each binomial difference.

     

    23 . alt        26. alt

     

    24. alt        27. alt

     

    25. alt        28. alt

     

     

    29. Describe how the coefficients of each term in the product is related to the coefficients of

    the binomial.

     

     





    Use the FOIL pattern to calculate each product.

     

    30 . alt       34 . alt

     

    31 . alt       35 . alt

     

    32 . alt       36 . alt

     

    33 . alt       37 . alt

     

     

    38 . Why are there only 2 terms in the final product of these problems?

     

     

    What conditions must exist for this to happen?

    Back to top