General Science Reading Log Changes of State p. 638-641				Name Date	Period
Be a c	heck in	the Agre		believe a statement i	If you believe a statement is true, place s false, place a check in the <i>Disagree</i>
[]]	gree		☐ 2. The me☐ 3. When a	lting point of water in material is changing	f the speed (kinetic energy) of molecules. s the same as the freezing point. g state, the temperature changes. they change directly from a solid to a gas.
	rt 2: the rea	ding log	on the back side	of this page.	
Af the the	inform text say	ation you	u read, supports y umn (A). If the in	our answer, check in	testions and your answers in Part 1. If a the <i>Yes</i> column below, then write what upport your choices, place a check in
	Text sup my cho Yes	oice.	(A) Why is my choice	e correct?	(B) Why is my choice incorrect?
2.					
3.					
4.					

pages 638 - 641

Paragraph #	What is this about?	What is special?
p. 638 ¶#1		
p. 638 ¶#2 & 3		
p. 638 ¶ #4 and p. 639 ¶ #1		
p. 639 ¶#2	kinetic energy & potential energy	
p. 639 ¶ #3 and p. 640 ¶ #1		
p. 640 ¶ #2	vaporization	
p. 640 ¶#3	heating curve of water	Compare graph to yours. How is it similar?
p. 641 ¶#1		

pages 638 - 641

Paragraph #	What is this about?	Why is it special?	
p. 638 ¶#1	particles	 all matter made of particles dif. materials made of dif. types of particles particles are always moving closer particles have greater attractive forces 	
p. 638 ¶#2 & 3	temperature	 liquids expand when hot temperature is measure of speed of molecules temperature = average KE of molecules KE = ½ mv² 	
p. 638 ¶ #4 and p. 639 ¶ #1	melting & freezing points	 as temp increases, KE of particles increases normal melting pt. = temp when water changes from solid to liquid normal freezing point = temp when water changes from liquid to solid 	
p. 639 ¶#2	kinetic energy & potential energy	 when temp of water stayed same (0c), avg. KE did not change all energy caused phase change (change in PE) if change in KE, then change in temp. 	
p. 639 ¶#3 and p. 640 ¶#1	boiling point	 100°c = normal boiling point if atm. pressure <1, water will boil < 100°c, like on Mt. Rainier 	
p. 640 ¶ #2	vaporization	 at boiling pt, temp. didn't change even with heat energy added temp would stay same until liquid vaporized 	
p. 640 ¶ #3	heating curve of water	Compare graph to yours. How is it similar?	
p. 641 ¶#1	sublimation	 dry ice (solid CO2) doesn't have melting point dry ice has sublimation point sublimation = solid to gas 	