| General Science Reading Log
Changes of State
p. 638-641 | | | | Name
Date | Period | |---|---------------------------|-----------|---|--|--| | Be
a c | heck in | the Agre | | believe a statement i | If you believe a statement is true, place s false, place a check in the <i>Disagree</i> | | [
]
] | gree | | ☐ 2. The me☐ 3. When a | lting point of water in material is changing | f the speed (kinetic energy) of molecules. s the same as the freezing point. g state, the temperature changes. they change directly from a solid to a gas. | | | rt 2: the rea | ding log | on the back side | of this page. | | | Af
the
the | inform
text say | ation you | u read, supports y
umn (A). If the in | our answer, check in | testions and your answers in Part 1. If a the <i>Yes</i> column below, then write what upport your choices, place a check in | | | Text sup
my cho
Yes | oice. | (A)
Why is my choice | e correct? | (B) Why is my choice incorrect? | | 2. | | | | | | | 3. | | | | | | | 4. | | | | | | ## pages 638 - 641 | Paragraph
| What is this about? | What is special? | |---|-----------------------------------|--| | p. 638
¶#1 | | | | p. 638
¶#2 & 3 | | | | p. 638
¶ #4
and
p. 639
¶ #1 | | | | p. 639
¶#2 | kinetic energy & potential energy | | | p. 639
¶ #3
and
p. 640
¶ #1 | | | | p. 640
¶ #2 | vaporization | | | p. 640
¶#3 | heating curve of water | Compare graph to yours. How is it similar? | | p. 641
¶#1 | | | ## pages 638 - 641 | Paragraph
| What is this about? | Why is it special? | | |---|-----------------------------------|---|--| | p. 638
¶#1 | particles | all matter made of particles dif. materials made of dif. types of particles particles are always moving closer particles have greater attractive forces | | | p. 638
¶#2 & 3 | temperature | liquids expand when hot temperature is measure of speed of molecules temperature = average KE of molecules KE = ½ mv² | | | p. 638
¶ #4
and
p. 639
¶ #1 | melting & freezing points | as temp increases, KE of particles increases normal melting pt. = temp when water changes from solid to liquid normal freezing point = temp when water changes from liquid to solid | | | p. 639
¶#2 | kinetic energy & potential energy | when temp of water stayed same (0c), avg. KE did not change all energy caused phase change (change in PE) if change in KE, then change in temp. | | | p. 639
¶#3
and
p. 640
¶#1 | boiling point | 100°c = normal boiling point if atm. pressure <1, water will boil < 100°c, like on Mt. Rainier | | | p. 640
¶ #2 | vaporization | at boiling pt, temp. didn't change even with
heat energy added temp would stay same until liquid vaporized | | | p. 640
¶ #3 | heating curve of water | Compare graph to yours. How is it similar? | | | p. 641
¶#1 | sublimation | dry ice (solid CO2) doesn't have melting point dry ice has sublimation point sublimation = solid to gas | |